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A modified boundary integral (BIE) method which facilitates accurate solution of 
Lapiacian boundary-value problems is presented. This method is designed specifically for 
treatment of problems in which singularities occur on the interface between two regions with 
different physical properties, and is illustrated by application to two physical probiems. 
Analytic expressions for the integrals arising in the piecewise-linear and piecewise-quadratic 
BIE approximations are also presented. These analytical expressions afford an appreciable 
reduction in computational time when compared with previously employed quadrature for 
mulae. 

Elliptic boundary-value problems arising from the examination of physical 
situations encountered in engineering and mathematical physics are, in general. 
intractable by analytical treatment. Although various numerical techniques have been 
proposed for the solution of such problems, e.g., the finite difference 1 i I. finite 
element [ 21, and boundary integral equation (BIE) [3 ] methods, standard forms of 
these techniques tend to yield inaccurate solutions for problems involving boundary 
singularities. Consequently, the possibility of modifying these numerica! techniques to 
give special treatment to singular points, and thereby to obtain solutions which 
converge more rapidly has received considerable attention i 3-i 01. 

Symm [37 devised a modification of the BIE method which can successfully treat 
boundary singularities in two-dimensional Laplacian problems. The results obtained 
by employing this method offer considerable improvement over those given by 
Gaierkin methods modified by either mesh refinement near the singularity. 01 
inclusion of terms having the analytical form of the singularity [3,6]. The Fresent 
investigation considers problems in which the boundary singuiarities occur on the 
interface between two regions with different physical properties, e.g., different thermal 
conductivities in heat diffusion problems ( 111, and different dielectric permittivities in 
electromagnetics [4]. Blue 1141 discussed how the BIE techniques may be applied to 
multiple-region problems and indicated that this would require a significant change in 
data structure in comparison with single-region problems. In this study these BIB 

1-l 
002 ; 999 I :‘H 1,C307c077- 22so2.00: ri 

Copyright :C !98 I by Acsdemlc Pr~sn, lrc 
Ali rights of rcproducmn I” any :bm rcsrved. 



78 INGHA.M, HEGGS. AND IMANZOOK 

techniques are implemented and then extended, in a manner analogous to the 
modification devised by Symm [3], to incorporate the analytical form of the 
singularity and thereby to facilitate a more accurate solution. In order to illustrate the 
solution capailities of this singular BIE method two problem which involve L-shaped 
domains with mixed boundary conditions are examined. Solutions are cntrasted with 
those obtained by employing standard piecewise-constant, piecewise-linear and 
piecewise-quadratic BIE implementations. Furthermore, previously undetermined 
analytical solutions for the integrals associated with the piecewise-linear and 
piecewise-quadratic BIE formulations are presented. The use of these analytical 
expressions instead of quadrature formulae [13] not only reduces the programming 
complexity but also results in substantial reductions in the computational time. 

THE STANDARD BIE METHODS 

As detailed descriptions of the various BIE formulations for obtaining solutions to 
plane potential boundary-value problems have previously been presented [ 3, 12, 13 1, 
only those features necessary to facilitate a concise explanation of the proposed 
modifications, are presented in this study. 

For any sufficiently smooth function $ which satisfies Laplace’s equation in a 
plane domain R, having a piecewise-smooth boundary &f?, Green’s Integral Formula 
may be expressed as 

1 
Ml) log’ I P - 4 I - 4’(q) log I P - 4 I I & = V(P) 4(P), 

ao 
(1) 

where 

(i) p E R + Xl, q E XL 

(ii) dq denotes the differential increment of 8f2 at q. 

(iii) The prime ’ denotes the derivative in the direction of the outward normal 
to CY2 at q. 

(iv) If p E Q then 9 = 2n, and if p E cX2 then q is the internal angle included 
between the tangents to 80 on either side of p. 

If either 4, 4’ or a linear combination of 4 and 4’ is prescribed at each point of X!, 
then solution of the equation 

I an 1~(4)log’/4-ql-~‘(q)logl4-ql}~q-rl(~)~(4)=0~ 
q, 4 E w (2) 

determines 4 and 4’ at each point of B.Q. The potential 4 at any point p E (0 + 20) 
can then be computed employing Green’s Integral Formula, Eq. (1). 
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Thus, application of Green’s Boundary Formula, Eq. (2), enables well-posed two- 
dimensional Laplacian boundary-value problems to be reformulated as integral 
equations in which the unknowns are boundary values of the potential, 4, and its 
normal derivative, gl, complementary to those prescribed by the boundary conditions. 
However, in practice these integral equations can rarely be soived analytically, and 
therefore various numerical techniques have been proposed to enable application. of 
Green’s Boundary Formula [3, 12, 13 1. 

In the classical BIE (CBIE) method [3], the boundary aa is subdivided into 
smooth intervals, 8aj, j = l,..., N, on which 4 and 9’ are approximated by piecewise- 
constant functions #j and #j. Application of the corresponding discretized form of the 
Integral Formula, 

to the midpoint, p = qj, of each interval and enforcing the boundary conditions, 
generates a system of linear algebraic equations. Solution of these equations 
determines $i and $j on each interval. The solution at any interior point can then be 
computed by a relatively simple quadrature, Eq. (3). 

The linear BIE (LBIE) method, affords a slightly more sophisticated approx- 
imation of Green’s Integral Formula than the classical BIE method. On each interval 
f?Q,, j = l,..., N, 4 and 4’ are approximated by piecewise-linear functions 

where qj and q,+ , are the endpoints of &0,, and < is a linear function which increases 
from zero at qj to unity at qj+, . Correspondingly, Green’s Integral Formula becomes 

N 

- $ j&j- (l-ohIP-ql&+4+j~, [ 
j=l aoj -aRj 

= ‘I( PI 4(P), pEQ+2l2, qE2Qt (4) 

where 4, and 4; denote $(qj) and @‘(q,), respectively. A system of linear algebraic 
equations in the unknown 4, and 4; can now be generated by collocating Eq. (4) at 
each of the points p E qj. 

A more accurate approximation of the solution to the boundary integral equations 
can be obtained using the quadratic BIE (QBIE) method 1131. In this approach? on 
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each interval Saj, j= I,..., N, $ and 4’ are approximated by piecewise-quadratic 
functions, 

4 = Ml(O O(q*j- I) + Ml(t) d(42j) + M3(tl #(q*j+ l>v 

4' = Ml(C3 @'(42j- 1) + M2(5) 4'(q2j) + MJ(t) 4'(42j- I), 

where q2j-1 and q2/+, are the endpoints of ~~j, q2j is the midpoint of 8J2,, r is a 
linear function which increases from zero at qTj-, to unity at q2)+, , and 

M,(C) = 1 - 35 + 2r2, 

M,(r) = 4r - 4r2, 

M3(Q = -< - 2<2. 

On the basis of these approximations the Integral Formula becomes 

+0;+1 j M&)logIP-qldq 
a*, ! 

= V(P) 4(P), pER+a2, qEa2. 

A system of linear algebraic equations in the unknown ~j and #J can now be 
generated by applying formula (5) to each of the points p = qi,j = l,..., 2N. Thus, for 
an N interval discretization, the QBIE method requires solution of 2N equations in 
2N unknowns, whereas the CBIE and LBIE methods require solution of N equations 
in N unknowns. 

With the classical BIE formulation nodal points are situated only at segment 
midpoints and therefore 4’ has precisely one value at each of these nodal points. 
However, with the linear and quadratic BIE formulations, nodes are situated at 
segment endpoints and therefore at domain corners (6’ has two components; one 
related to each of the sides adjacent to the corner. Thus, the linear and quadratic BIE 
methods are restricted to problems for which a relation of the form 

q=aqb+p (a, /3 given functions) 

is prescribed on at least one of the sides of the corner. 
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If the interval aGj is a straight-line segment, then the integrals in formuiae (3), (4) 
and (5) can be evaluated exactly using 

I iog’jp-qJdq=Z,, 
h, 

i. 
~!og~Ip-ql~q=~((h-2acos~)2z,-4(h-20cOS~)z2i413), (10) 

~(1I,52loglp-q~~q=~((h-~cos~~2J,-4(~-2ncorp)i,+4i3), (ii) 

where 

1, = w, 
I, = a sin /3(log b - log a), 

Zj = a sin /?(A - a~ sin p), 

J,=acos~(loga-logb)+h(logb-l)+avsin/?; 

J, = f(b’ Iog b - a2 log a) - $(b* - a’), 

~3=f((h-acosj.?)3(logb-f)+(acos~)3(loga-~) 

+ (a sin /I)’ (h - sly sin /I)} (17) 

and if qaj and qbj denote the endpoints of X$, Fig. 1, then a, b and h are the lengths 
of the lines joining p to qOj, p to q6, and qaj to qbj, respectively. and B and v are the 
angles qhjqajp and qajpqhj, respectively. 

The analytical solutions for the integrals associated with the CBIE method, Eqs. 
(6) and (7), were presented by Symm [ 31. However, the integrals associated with the 
LBIE and QBIE methods, Eqs. (4) and (5), have previously been evaluated 
numerically 1 131. Evaluation of these integrals by the analytical expressions, 
(6)-( I I), requires only a fraction of the computational time taken by an zccurate 
numerical technique, and since for an N interval discretization each of the integrals 
has to be evaluated N times for every point to which Green’s Integral Formula is 
applied, it is apparent that these analytical expressions yield appreciable reductions in 
the computational times required by the LBIE and QBIE methods. 
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FIG. 1. Straight-line segment geometry. 

To demonstrate the problems caused by the presence of boundary singularities, the 
CBIE, LBIE and QBIE methods are applied to two physical problems involving L- 
shaped domains. 

Problem 1 

This problem arises from the examination of heat flow through finned surfaces 
[ 1 I), and involves an L-shaped composite of two rectangular domains, Fig. 2, having 
different thermal conductivities. The temperature distribution Q within the domain 
(A + B), Fig. 2, is determined by simultaneously solving 

and 

v2$d, = 0 

V2& = 0 

in region A (18) 

in region E (19) 

subject to the boundary conditions 

on OA 

on AB 

on BC 

on CO 

on CO 

on CD 
on DE 

on EF 

on FO 

(20i) 

(20ii) 

(20iii) 

(20iv) 

POv) 

(20vi) 
(20vii) 

(2Oviii) 

(20ix) 
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FIG. 2. L-Shaped domain 

where k, and k, are the thermal conductivities of regions A and B, respectively, and 
h, and h, are the heat transfer coefficients at the surface DE and FOAB, respectively. 

Applying Green’s Boundary Formula, Eq. (2), to this problem gives rise to an 
integral equation involving two coupled contour integrals, one around af2, 
(= OABCO), and the other around BR, (= OCDEFO); the coupling arises through 
the interface boundary conditions (20iv) and (20v). Solution of this integral equation, 
by the numerical techniques described above, determines the boundary distributions 
of 4 and 4’. Then to compute the potential # at any interior point, it is only necessary 
to apply Green’s Integral Formula to the boundary of the region in which that point 
lies. In particular, the potential at points on the common interface OC can be 
evaluated by applying Green’s Integral Formula to either 5R, or X!,. 

One of the quantities of physical importance in this problem is the rate of heat 
transfer, Q: which is given by Ill], 

= h, 1 4th) 4 + [ 4n(q> ds (22) 
-8.0 - VAB 

as there are no heat sources situated within the domain (A + B). It is apparent from 
expressions (21) and (22) that evaluation of Q only requires the boundary 
distribution of Q, and this is precisely the information obtained when the boundary 
integral equation representing the problem described by Eqs. (18), (19) and (20) is 
solved. 

Results have been obtained by application of the CBIE, LBIE and QBIE methods, 
employing 50, 100 and 200 equal length boundary intervals, for the case OA = -4B = 
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TABLE I 

Intervals 

50 100 200 

i. Problem 1: CBIE method results 

Q,NIQo<:T 5.7387 5.7346 5.7330 

%Qo,:, 5.7342 1.0007 5.7321 1.0004 5.7317 I .0002 

ii. Proble I: LBIE method results 

5.7084 5.7199 5.7260 
5.7387 5.7350 5.7334 

Q,./Qm, 0.9947 0.9973 0.9987 

. . . 
III. Problem 1: QBIE method results 

Q,, 5.7129 5.723 1 5.7280 
2:ie0,;, 5.7334 0.9964 5.7325 0.9984 0.9993 5.732 1 

iv. Problem I: MBIE method results 

Eh,T 5.7330 5.7325 5.7325 5.7321 5.7321 5.7321 
Q,,/Q,w, 0.9999 1.0000 1 .oooo 

EF= FO = 1, h, = 1000, h, = 10, k, = 250 and k, = 10. This represents a heat 
exchanger comprised of copper in region A and steel in region B, with forced 
convection of water along DE and free convection of air around FOAB. In Table 
Ii-iii, QIS and QouT represent the heat transfer rates corresponding to expressions 
(21) and (22), respectively; as the CBIE, LBIE and QBIE methods are based on 
assumed boundary variations of @ and #‘, they need not give the same values for QIY 
and Qou.,., although obviously a satisfactory solution must do so. 

This problem has a singularity at the re-entrant corner 0, and the results displayed 
in Table Ii-iii clearly illustrate the slow convergence caused by the presence of this 
singularity. 

Problem 2 

This problem arises in the study of plane potential flow through a porous medium 
between impervious pins (3,5 J, and involves an L-shaped domain, Fig. 2, with a 
singularity at the re-entrant corner 0. The determination of the potential 4 requires 
solution of 

V#=O in region (A + B) (23) 
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subject to the boundary conditions 

on OA $4’ = o1 

onAB d = 0, 

on BD gf = 0, 

on DE Id= 1, 

on EF $4’ = 0, 

on FO 9’ = 0. 

This problem is essentially a special case of the problem 

v2+h4 = 0 

v*$, = 0 

subject to the conditions 

on OA 

onAB 

on BC 

on CO 

on CO 

on CD 

on DE 

on EF 

on FO 

in region A: 

in region B 

(24i,) 

i24ii) 

(24iii) 

(2aiv) 

(24v) 

(24vi) 

(25) 

(25) 

Solutions to the problem described by Eqs. (25), (26) and (27) have been obtained 
by application of the CBIE, LBIE and QBIE methods, employing 50, 100 and 200 
equal length boundary intervals, for the case OA =AB=EF= FO= 5 and 
k, = k, = 1. The results presented in Tables Hi, IIii and IIiii show the potential at the 
lattice points of a unit mesh. Slow convergence, particularly in the neighbourhood of 
the singularity, is again evident. 

In the next section a modified BIE method is described which gives special 
treatment to singular points and thereby yields, in general. considerably more 
accurate solutions than those given by the CBIE, LBIE and QBIE methods. 
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THE MODIFIED BIE METHOD 

Symm (31 showed that by including terms having the analytical form of the 
singularity in the CBIE method, the problems caused by the presence of the 
singularity can be overcome. However, this method is not directly applicable to 
problems in which the singularity occurs on the interface between two regions with 
different physical properties, because the analytical solution in the neighbourhood of 
the singularity is represented by different expressions in the two regions. The 
modifications necessary to overcome this diffkulty in the case of problem 2 are now 
presented. The analysis for problem 1 is very similar and therefore is not presented. 

First, it is necessary to determine the analytical form of the solution in the 
neighbourhood of the singular point, which is situated at the re-entrant corner 0. 
Employing the polar co-ordinates (r, <) in region A, and (r, q) in region B, Fig. 3, the 
general solutions of equations (25) and (26) can be expressed as 

gA (r, <) = nzo r-%, cm h, tl + b, sin 4, 0, 

&(r, q) = 2 +(c, cos pin rl+ d, sin cr, r), 
n-0 

(28) 

(29) 

where the eigenvalues A,, and ,L,, and the coefficients a,, b,, c, and d, are undeter- 
mined constants dependent upon the boundary conditions. 

In the neighbourhood of the singularity, the solutions (28) and (29) are subject to 
the boundary conditions. 

onr=O 4; = 0, (30i) 

on~=n/2,~=n #A =hl, (30ii) 

on<=7C/2,v=7r kA#; = -k,d;, (30iii) 

onq=O Qk = 0, (30iv) 

where <= 0, q = 0 and(<= 7112, v = n) specify the boundaries OA, OF and OC 
respectively. 

Enforcing conditions (30i) and (3Oiv), and then matching at the common interface, 
using conditions (30ii) and (3Oiii), gives 

and 



IMPROVED BIE METHODS 

FIG. 3. Re-entrant corner neighbourhood 

where a, ,l$ 7 and d are unknown contants, and 

a*=a 

fi” =pcosn,7r~cos~,(7r/2), 

y* = y cos 1,7r/cos Azn, 

6” = -6, 

i, = 2E, 2( 1 - c), 2, 2(1 + c), 2(2 - c) )...) n = 1, 2,..., 

1 
&=-cos-’ 

71 ( kB r VA + kR)/ 

Inclusion of terms of the singular solutions (31) and (32) in the CBIE method is 
performed by analogy with the method presented by Symm [3 1. Functions ‘i/A and vI1 
are defined such that 

and 

4,(P) = V,(P) -t.fA(P), PEA +13AAl (33) 

#B(P) = W,(P) + fB(P)Y pE B +cYB, 134) 

where 

(35) 
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(36) 

Thus, the functions vn and vg are harmonic in regions A and B, respectively, and 
satisfy the boundary conditions, 

on OA w:, = -f ,: 3 (37i) 

onAB VA = -f* 3 (37ii) 

on BC wa =-fa, (37iii) 

on CO ‘VA = V/B, (37iv) 

on CO k, wa = -k,y/;, (37v) 

on CD wk = -.f;,, (37vi) 

on DE v/R= 1 -f,, (37vii) 

on EF w;,=-s;, (37viii) 

on FO y&=-f;. (37ix) 

Applying the CBIE method to the functions vA and wrr and enforcing the boundary 
conditions (37) generates a system of N linear algebraic euations in N + 4 unknowns, 
including the constants a, 0, y, and 6. To reduce the number of unknowns to N, it is 
necessary to assume that va = 0 on the intervals 1 and 2, Fig. 4, and wti = 0 on the 
intervals N and N - 1, i.e., in the vicinity of the singular point 0, the potentials #,4 
and #n can be approximated by the expressions (35) and (36) for fA and fR. Solving 

I 

'0 
I 2 , 3 

N 

N-l 

t N-2 

I 
FIG. 4. Boundary discretization. 
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this system of equations determines the boundary distributions of VI and w’, and also 
the constants a, ,8, ‘J and 6. The potential d at any point in (A $ B) can then be 
computed using appropriately discretized forms of Eq. (33) and (34). 

Solutions to problem 2 have been obtained employing this modified BIE (MBIE,) 
method, for the case OA = AB = EF = FO = 1 and k, = k, = 1, and are presented in 
Tab!e IIiv. Comparison with the solutions obtained employing the s!andard BIE 
methods, Tables Iii, IIii and IIiii, shows that the MBIE method affords a considerable 
imnrovement in the rate of convergence, in pa:ticular near the singulari:y. However, 
on the boundaries AB and DE, on which the potential is prescribed to be 0 and :, 
respectively, the LBIE and QBIE methods are more accurate than the MBIE method. 

Problem 1 has also been solved employing the MBIE method, and representative 
results for the case OA =AB = EF = FO = lV hi = !OOO. hi = 13, k, = 250 and 
k, = !O are presented in Tabie Iiv. These results are significantly better than those 
given by the standard BIE methods, Table Ii-iii. In particular. the heat transfer rates. 
QIN and &uT, converge appreciably more rapidly, and the requirement that the ratio> 
of CA3 and Qol.r be unity is satisfied more accurately than by the CBIE. LBIE and 
QBIE methods. 

DISCUSSION AND CONCLUSIONS 

The MBIE method presented here enables effective treatment of two-dimensional 
Laplacian probiems involving singular points at which there is also a change of the 
physical properties. Although the method is only described for problems involving L- 
shaped domains, it is applicable to any such problem for which the analytica! form of 
the singularity can be determined. Results have been obtained for other problems and 
in all cases the modified BIE method facilitated an improvement in the rate of con- 
vergence. 

The additional sophistication inherent in the MBIE method, while requiring 
considerably more programming time than the standard BIE methods, affords 
improved accuracy for modest boundary discretizations. Furthermore, for a given 
number of boundary intervals, the MBIE does not require appreciably *more 
computational time than the CBIE and LBIE methods, and in fact cniy requires 
between one-fourth and one-half the computational time of the QBIE method. This is 
due to the fact that for an N interval discretization, the QBIE method generates 

2N x 2N equations, whereas the CBIE, LBIE and MBIE methods only generate 
N X N equations. 

Although evaluation of the integrals associated with the LBIE and QBIE methods, 
by the analytical expressions presented here, requires substantially less computational 
time than that required by previously employed quadrature formuiae j 13 1, these 
analyticai expressions are only applicable for rectilinear boundaries; for the TWO 
prob!ems considered in this study it has been found that the use of the analytical 
expressions facilitates a reduction in the overall computational time of up to 50?6, 
depending upon the piecewise-approximation and the size of the discretization. 
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However, it may be desirable to approximate curved boundaries by a series of 
straight-line segments, and integrate over these segments exactly. 

It should be noted that the MBIE method is a modification of the CBIE method. 
The LBIE and QBIE methods cannot be modified, in a non-trivial way, because of 
the necessity to evaluate f 1 and f k at the point 0, where these quantities are infinite. 
Further work on this aspect is at present under investigation. 
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